新製品 新技術紹介

『非線形超音波を用いた材料内部可視化法』

有限会社超音波材料診断研究所 所長

川嶋 紘一郎

〒511-0835 桑名市本願寺45 TEL&FAX: 0594-87-3940

URL: http://www.nl-ultrasonics.co.jp/

【はじめに】

平成2年度の名古屋工業技術グラ ンプリにおいて、「非線形超音波を用 いた材料内部可視化法」に対して奨 励賞を戴き、有難うございました。

弊社は川嶋が名古屋工業大学定 年退職後の2004年に設立しました。 非線形超音波法を用いて工業材料 内の不健全部(異質部・欠陥)を可視 化する技術の開発を進めております。

人体の超音波エコ診断に比べ2-3桁大きなエネルギーで材料を揺り 動かします。医用診断では、X線CT, 超音波、MRIなどを用いた腫瘍、異 常組織の非侵襲検査画像化技術の 進展が著しいのに対し、工業材料の 非破壊検査・評価は、発電, 石油化 学など大型プラント等の厚肉構造物 の欠陥・減肉検査が主対象であり、 自動車・産業機器・電子部品などの 製造業において要望の高い、薄物

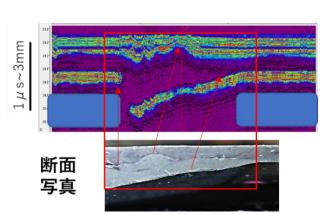
の隙間の無い材料内異質部・接着 接合不健全部の非破壊画像化は、 ほとんど行われてきませんでした。

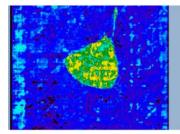
【技術の特徴】

金属・樹脂・セラミクスなどの工業材 料に対して、非線形超音波法は、従 来超音波法より1000倍ほど大きなエ ネルギーの正弦波を入射して材料を 揺り動かしたとき異質部・接着接合不 健全部で発生する正弦波からのゆが みを高速フーリエ変換により高調波 振幅として定量化します。

この振幅を画像化することにより、 従来超音波法で検出・可視化できな かった材料異質部・劣化損傷部を可 視化します。

下図左は薄鋼板溶接溶け込み深 さの非線形超音波像と断面写真を、 右は擬似等方性CFRP板中央部に 設けた非前処理部(弱接着部)を含 む接着面の画像を示します。


【今後の展開】


非線形超音波法の基礎とそれを用 いた各種工業材料内部可視化の多 数の適用例が拙著(愛智出版, 2021) に記載されているので、関心のある 方は参照下さい。

最近は自動車EV化に関連して電 子・電気部品メーカーからの異種材 料接合・接着面の異質部・劣化損傷 部可視化の依頼も増えています。

材料内部の見えないものを超音波 で診るという技術開発を今後も進め、 製品・部品の信頼性向上に貢献した いと思います。

高調波像

従来超音波像